This quest	ion pa	per co	ntains	4 prin	ted p	age	s]				•		
		Roll N	o										
S. No. of	Questic	n Pape	er: 67	6									
Unique Pa	per Co	de	: 10	7485							G		٠
Name of t	he Pap	er	: M	olecula	r Bio	logy	-LI	٠	•				
Name of t	he Cou	rse	: B.	Sc. (H)	(Bot	any/	Z 00	log	y/Bi	och	emis	itry/	
		-	Bio	o-Medi	ical/M	licro	biol	logy	//An	thro	polo	ogy)	
Semester			: IV		,	•							
Duration	: 3 H	ours · .					Max	kim	um	Ma	rks	: 75	
(Write your	Roll No	on the	top imi	nediate	ly on	rece	ipt o	f th	is qu	estic	on pa	per.)	• :
•	At	tempt .	<i>five</i> qu	estions	s in a	all, i	inclu	ıdir	ıg				
	Ç	uestio	n No.	l whic	h is	com	puls	ory	•				
	Draw '	well-lal	belled o	diagran	ns wh	erev	ver 1	nec	essa	ry.			
1. (a)	Defin	e the	followi	ing:								5	
	(i)	Trans	cription	ı bubl	ole						•		
	(ii)	Trans	-esterif	ication									•
	(iii)	ORF			•				•				
•	(iv)	Catab	olite r	epressi	ion	•					٠		•
•	(v)	Riboz	yme.										

State true/false:

- RNA polymerase does not need a primer for transcription initiation.
- Dicer and Drosha recognize and cleave RNAs on the basis of sequence of their substrates.
- (iii) Each aminoacyl-tRNA synthetase attaches a single amino acid to one or more IRNAs.
- (iv) Group I introns release a lariat rather than a linear intron.
- . Apo-repressors can bind directly to the operator site of the gene.

Expand the following:

- (i) TAF
- (ii) RBS
- (iii) Xist
- (iv) STAT
- (v) CAP

Explain transcription initiation by RNA polymerase II. Illustrate your answer.

Explain, with the help of suitable diagrams, the working of the lac operon in the following conditions:

- When only lactose is present
- When only glucose is present (ii)
- When both lactose and glucose are present
- When both lactose and glucose are absent
- Differentiate between the following (any three): (a) Spliceosome and ribosome 3×5≈15
 - mRNA and tRNA
 - Alternative splicing and exon shuffling
- Translation initiation in prokaryotes and eukaryotes. what is the role/significance of the following?

3×5≈15

- Sigma factor in transcription
- rut sites (c)
- tmRNA (d)
- Leucine zipper domain

5.	(<i>a</i>)	How are mRNAs that are incomplete or have a prema-							
		ture stop codon targeted and destroyed in eukaryotes	? 8						
٠	(b)	Explain the spliceosome-mediated splicing reaction	with						
٠		the help of a well-labelled diagram only.	7						
6.	(a)	Explain the various ways by which transcription) is						
		terminated in prokaryotes.	7						
	(b)	Discuss the various ways in which eukaryotic repres	sor						
		regulate transcription.	8						
7.	Wri	te short notes on the following (any three): 3×5	j=15						
	(a)	RNA editing							
	(b)	Combinatorial control	· .						
	(c)	Riboswitches							
	(d)	RNA interference							
	(e)								